Agrobacterium tumefaciens-mediated transformation of yeast.
نویسندگان
چکیده
Agrobacterium tumefaciens transfers a piece of its Ti plasmid DNA (transferred DNA or T-DNA) into plant cells during crown gall tumorigenesis. A. tumefaciens can transfer its T-DNA to a wide variety of hosts, including both dicotyledonous and monocotyledonous plants. We show that the host range of A. tumefaciens can be extended to include Saccharomyces cerevisiae. Additionally, we demonstrate that while T-DNA transfer into S. cerevisiae is very similar to T-DNA transfer into plants, the requirements are not entirely conserved. The Ti plasmid-encoded vir genes of A. tumefaciens that are required for T-DNA transfer into plants are also required for T-DNA transfer into S. cerevisiae, as is vir gene induction. However, mutations in the chromosomal virulence genes of A. tumefaciens involved in attachment to plant cells have no effect on the efficiency of T-DNA transfer into S. cerevisiae. We also demonstrate that transformation efficiency is improved 500-fold by the addition of yeast telomeric sequences within the T-DNA sequence.
منابع مشابه
Optimization of Agrobacterium-mediated transformation in oyster mushroom (Pleurotus ostreatus) by vector containing human pro-insulin gene
Transferring foreign genes into mushroom mediated by Agrobacterium tumefaciens is a standard technique in genetic engineering. Recombinant human insulin has been greatly used in the treatment of type I diabetes. The production of edible mushroom derived insulin should facilitate oral delivery. In this study we used the Agrobacterium tumefaciens mediated transformation method for the transfer an...
متن کاملAgrobacterium Mediated Transformation of Maize (Zea mays L.)
Agrobacterium tumefaciens mediated transformation may offer a better alternative than the biolistic gun for genetic transformation of maize plants. This gene delivery system results in a greater proportion of stable, low-copy number transgenic events than does the biolistic gun, and is highly efficient. In the present work, we studied maize transformation using A. tumefaciens by identifying som...
متن کاملPurine synthesis and increased Agrobacterium tumefaciens transformation of yeast and plants.
The bacterium Agrobacterium tumefaciens transforms eukaryotic hosts by transferring DNA to the recipient cell where it is integrated and expressed. Bacterial factors involved in this interkingdom gene transfer have been described, but less is known about host-cell factors. Using the yeast Saccharomyces cerevisiae as a model host, we devised a genetic screen to identify yeast mutants with altere...
متن کاملRegeneration and Agrobacterium-mediated transformation of three economically important strawberry cultivars Kurdistan, Camarosa and Paros
Genetic transformation studies were carried out to standardize a protocol for Agrobacterium -mediated genetic transformation of three economically important strawberry (Fragaria x ananassa Duch) cultivars Kurdistan’, Camarosa’, and ‘Paros’. Shoot regeneration frequency 72, 65 and 30% was obtained on MS (1) basal medium supplemented with 2% glucose and 4 mg/l TDZ for Camarosa, Kurdistan and Paro...
متن کاملHigh-Efficiency Agrobacterium-Mediated Transformation of Tobacco (Nicotiana tabacum)
To improve Agrobacterium-mediated transformation of tobacco, factors influencing gene delivery, including genotype of the plant, bacterial strain, and Agrobacterium transformation procedure, were tested via direct somatic embryogenesis. Leaf tissue of three different tobacco genotypes (Nicotiana tabacum L. cvs. Samsun, and Xanthi, and N. benthamiana) we...
متن کاملDeletion of RAD52 in Saccharomyces cerevisiae severely decreases frequencies of Agrobacterium genetic transformation mediated by either an integrative or a replicating binary vector
Agrobacterium tumefaciens is capable to transfer genes across kingdoms. It can genetically transform not only plant cells, but also many other bacterial, algal, fungal, animal and human cells. This depends on the interactions among a variety of both Agrobacterium and host genes. Inside the host cell, RAD52 which is involved in DNA repair is a key gene determining integration of T-DNA by homolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 4 شماره
صفحات -
تاریخ انتشار 1996